Optimum MDS convolutional codes over GF(2<sup>m</sup>) and their relation to the trace function

> Ángela Barbero and Øyvind Ytrehus UVa, Simula@UiB, UiB

## **Problem setting**

- Unicast transmission over the Internet
  - (Memoryless) packet erasure channel, capacity " $1 \varepsilon$ "
- Solutions in the Internet:
  - TCP uses ARQ
    - Problem: Long round trip time (RTT)  $\approx$  100's ms
      - The recovery delay of any ARQ system large
      - Rate loss due to inexact RTT estimation

#### Delay of recovery

- If *no* delay constraints: ARQ sufficient in many cases
- Applications with delay constraints: Multimedia, IoT control applications, stock market applications, games
- Better: Erasure correcting codes

## **Coding criteria**

- Code rate close to channel capacity???
- (Low) probability of recovery failure
  - Either decoding failure: erasure pattern covers a codeword
  - Or recovery delay exceeding tolerance of application
- Recovery complexity: Systematic codes?

## **Coding candidates**

- MDS, Reed-Solomon: Long delay
- «Rateless», fountain codes: Long delay

Unsuited for delay sensitive app's

- Convolutional codes: «good» column distance profile
  - Binary?
  - q-ary
  - Flexible rate

«Block codes are for boys, convolutional codes are for men» – J. Massey

## **Convolutional codes for dummies**

Block code:

$$c = uG = (u_1 \cdots u_k) \begin{pmatrix} g_{11} \cdots g_{1n} \\ \vdots & \ddots & \vdots \\ g_{k1} \cdots & g_{kn} \end{pmatrix}$$
  
Minimum distance = min{ $w(c): c \neq 0$ }  
Convolutional code:

$$c = uG = (u^{(0)} \quad u^{(1)} \quad \dots) \begin{pmatrix} G_0 & G_1 & \cdots & G_L \\ & G_0 & \ddots & \vdots & \cdots \\ & & G_0 & \end{pmatrix}$$
$$c^{(0)} = u^{(0)}G_0, c^{(1)} = u^{(0)}G_1 + u^{(1)}G_0, \dots$$
$$CDP = \min\{w(c^{(0)}), w(c^{(0)}c^{(1)}), \dots : c^{(0)} \neq 0\}$$

Convolutional codes and erasure recovery for dummies

If CDP is (2,3,4, ..., *)* then

an erasure pattern

- of weight j and

- *starting* at block/time 1

will be recovered at time *j* iff  $j < \mathscr{D}^{n}$ 

## **Convolutional code approach**

- q-ary convolutional codes with optimum column distance profile
  - MDS-convolutional codes

• 
$$cdp = (n - k + 1, 2(n - k) + 1, ..., \mathcal{D}),$$

- Existence of MDS code equivalent to existence of superregular matrices
- Existing constructions require large field

## **Our convolutional code approach**

- Systematic
- Over GF(2<sup>*m*</sup>)
- High rate  $\frac{n-1}{n}$
- MDS (CDP=(2,3,4, ..., *D*, *D*, *D*, ...))

Let  $m \ge 1, n \ge 2, k = n - 1$  be integers,  $\mathbb{F} = GF(2^m)$ , and define the matrices and vectors

$$R_{0} = (r_{0,1}, \dots, r_{0,k}) \in \mathbb{F}^{k} \qquad H_{0} = (R_{0}|1) \in \mathbb{F}^{n},$$
$$R_{i} = (r_{i,1}, \dots, r_{i,k}|0) \in \mathbb{F}^{k}, H_{i} = \begin{pmatrix} H_{i-1} \\ R_{i} \end{pmatrix} \in \mathbb{F}^{(i+1) \times n}$$
$$H^{(L)} = (H_{L}, \begin{pmatrix} 0_{1 \times n} \\ H_{L-1} \end{pmatrix}, \dots, \begin{pmatrix} 0_{(L-1) \times n} \\ H_{0} \end{pmatrix}) \in \mathbb{F}^{(L+1) \times n(L+1)},$$

$$H^{(2)} = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & \alpha & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ \alpha^3 & 1 & 0 & 1 & \alpha & 0 & 1 & 1 & 1 \\ H_2 & H_1 & H_0 & H_0 & H_1 & H_1$$

Let  $m \ge 1, n \ge 2, k = n - 1$  be integers,  $\mathbb{F} = GF(2^m)$ , and define the matrices and vectors

$$R_{0} = (r_{0,1}, \dots, r_{0,k}) \in \mathbb{F}^{k} \qquad H_{0} = (R_{0}|1) \in \mathbb{F}^{n},$$
$$R_{i} = (r_{i,1}, \dots, r_{i,k}|0) \in \mathbb{F}^{k}, H_{i} = \begin{pmatrix} H_{i-1} \\ R_{i} \end{pmatrix} \in \mathbb{F}^{(i+1) \times n}$$
$$H^{(L)} = (H_{L}, \begin{pmatrix} 0_{1 \times n} \\ H_{L-1} \end{pmatrix}, \dots, \begin{pmatrix} 0_{(L-1) \times n} \\ H_{0} \end{pmatrix}) \in \mathbb{F}^{(L+1) \times n(L+1)},$$

**Example 1.** Let  $\mathbb{F} = GF(2^3)$  with primitive element  $\alpha$  defined by  $\alpha^3 + \alpha + 1 = 0$ .

$$H^{(2)} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & \alpha & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ \alpha^3 & 1 & 0 & 1 & \alpha & 0 & & & & \end{pmatrix}$$

H(0)

Let  $m \ge 1, n \ge 2, k = n - 1$  be integers,  $\mathbb{F} = GF(2^m)$ , and define the matrices and vectors

$$R_{0} = (r_{0,1}, \dots, r_{0,k}) \in \mathbb{F}^{k} \qquad H_{0} = (R_{0}|1) \in \mathbb{F}^{n},$$
$$R_{i} = (r_{i,1}, \dots, r_{i,k}|0) \in \mathbb{F}^{k}, H_{i} = \begin{pmatrix} H_{i-1} \\ R_{i} \end{pmatrix} \in \mathbb{F}^{(i+1) \times n}$$
$$H^{(L)} = (H_{L}, \begin{pmatrix} 0_{1 \times n} \\ H_{L-1} \end{pmatrix}, \dots, \begin{pmatrix} 0_{(L-1) \times n} \\ H_{0} \end{pmatrix}) \in \mathbb{F}^{(L+1) \times n(L+1)},$$

$$H^{(2)} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & \alpha & 0 \\ \alpha^3 & 1 & 0 \end{pmatrix}$$

Let  $m \ge 1, n \ge 2, k = n - 1$  be integers,  $\mathbb{F} = GF(2^m)$ , and define the matrices and vectors

$$R_{0} = (r_{0,1}, \dots, r_{0,k}) \in \mathbb{F}^{k} \qquad H_{0} = (R_{0}|1) \in \mathbb{F}^{n},$$
$$R_{i} = (r_{i,1}, \dots, r_{i,k}|0) \in \mathbb{F}^{k}, H_{i} = \begin{pmatrix} H_{i-1} \\ R_{i} \end{pmatrix} \in \mathbb{F}^{(i+1) \times n}$$
$$H^{(L)} = (H_{L}, \begin{pmatrix} 0_{1 \times n} \\ H_{L-1} \end{pmatrix}, \dots, \begin{pmatrix} 0_{(L-1) \times n} \\ H_{0} \end{pmatrix}) \in \mathbb{F}^{(L+1) \times n(L+1)},$$

$$H^{(2)} = \begin{pmatrix} & & \\ & & \\ & & \\ & H^{(2)} \end{pmatrix}$$

#### **Generator matrix of a convolutional code**

A systematic encoder for the code  $\mathscr{C}^{(L)}$  is represented by

$$G^{(L)} = \begin{pmatrix} G_0 & G_1 & \cdots & G_L \\ & G_0 & \cdots & G_{L-1} \\ & & \ddots & \vdots \\ & & & & G_0 \end{pmatrix} \in \mathbb{F}^{k(L+1) \times n(L+1)}$$

where

$$G_0 = (I_k | R_0^\top) \in \mathbb{F}^{k \times n}, G_i = (0_k | R_i^\top) \in \mathbb{F}^{k \times n} \text{ for } i > 0,$$

**Definition 1.** Consider a lower triangular matrix

$$SR = \begin{pmatrix} r_0 & 0 & 0 & \cdots & 0 \\ r_1 & r_0 & 0 & \cdots & 0 \\ r_2 & r_1 & r_0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ r_L & r_{L-1} & r_{L-2} & \cdots & r_0 \end{pmatrix}$$

where each element  $r_i \in \mathbb{F}$ .

**Definition 1.** Consider a lower triangular matrix



where each element  $r_i \in \mathbb{F}$ .

**Definition 1.** Consider a lower triangular matrix



where each element  $r_i \in \mathbb{F}$ .

**Definition 1.** Consider a lower triangular matrix



where each element  $r_i \in \mathbb{F}$ .

**Definition 1.** Consider a lower triangular matrix

$$SR = \begin{pmatrix} r_0 & 0 & 0 & \cdots & 0 \\ r_1 & r_0 & 0 & \cdots & 0 \\ r_2 & r_1 & r_0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ r_L & r_{L-1} & r_{L-2} & \cdots & r_0 \end{pmatrix}$$

where each element  $r_i \in \mathbb{F}$ .

Consider a square submatrix P of size p of SR, formed by the entries of SR in the rows with indices  $1 \le i_1 < i_2 < \cdots < i_p \le (L+1)$  and columns of indices  $1 \le j_1 < \cdots < j_p \le (L+1)$ . P, and its corresponding minor, are proper if  $j_l \le i_l$  for all  $l \in \{1, \dots, p\}$ . SR is superregular if all its proper  $p \times p$  minors are non singular for any  $p \le L+1$ .

When matrix SR is upper triangular the definition of proper submatrices is analogous.

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ \alpha^2 & \alpha & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & \alpha & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ \alpha & \alpha & 1 \end{pmatrix}$$

18

## **Our contributions**

- *s*-superregularity
- Constructions of MDS codes with CDP=(2,3, 27-4)
- Efficient algorithm to search for MDS codes with CDP=(2,3,4,...,  $\mathcal{D}$ ),  $\mathcal{D} \geq 5$

**Definition 2.** Consider an s-lower triangular matrix (where s is a positive integer)

$$SSR = \begin{pmatrix} r_{0,1} & \cdots & r_{0,s} & 0 & \cdots & 0 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ r_{1,1} & \cdots & r_{1,s} & r_{0,1} & \cdots & r_{0,s} & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ r_{2,1} & \cdots & r_{2,s} & r_{1,1} & \cdots & r_{1,s} & r_{0,1} & \cdots & r_{0,s} & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \cdots & \vdots & \ddots & \vdots \\ r_{L-1,1} & \cdots & r_{L-1,s} & r_{L-2,1} & \cdots & r_{L-2,s} & r_{L-3,1} & \cdots & r_{L-3,s} & \cdots & 0 & \cdots & 0 \\ r_{L,1} & \cdots & r_{L,s} & r_{L-1,1} & \cdots & r_{L-1,s} & r_{L-2,1} & \cdots & r_{L-2,s} & \cdots & r_{0,1} & \cdots & r_{0,s} \end{pmatrix}$$
(4)

**Definition 2.** Consider an s-lower triangular matrix (where s is a positive integer)

**Definition 2.** Consider an s-lower triangular matrix (where s is a positive integer)

$$SSR = \begin{pmatrix} & \cdots & r_{0,s} & 0 & \cdots & 0 & \cdots & \cdots & 0 & \cdots & 0 \\ r_{1,1} & \cdots & r_{1,s} & r_{0,1} & \cdots & r_{0,s} & 0 & \cdots & 0 & \cdots & 0 \\ & \cdots & r_{2,s} & r_{1,1} & \cdots & r_{1,s} & & \cdots & & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \cdots & \vdots & \cdots & \vdots & \ddots & \vdots \\ & \cdots & r_{L-1,s} & r_{L-2,1} & \cdots & r_{L-2,s} & & \cdots & & \cdots & 0 & \cdots & 0 \\ & r_{L,1} & \cdots & r_{L,s} & r_{L-1,1} & \cdots & r_{L-1,s} & r_{L-2,1} & \cdots & r_{L-2,s} & \cdots & r_{0,1} & \cdots & r_{0,s} \end{pmatrix}$$
(4)

**Definition 2.** Consider an s-lower triangular matrix (where s is a positive integer)



**Definition 2.** Consider an s-lower triangular matrix (where s is a positive integer)

$$SSR = \begin{pmatrix} r_{0,1} & \cdots & r_{0,s} & 0 & \cdots & 0 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ r_{1,1} & \cdots & r_{1,s} & r_{0,1} & \cdots & r_{0,s} & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ r_{2,1} & \cdots & r_{2,s} & r_{1,1} & \cdots & r_{1,s} & r_{0,1} & \cdots & r_{0,s} & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \cdots & \vdots & \ddots & \vdots \\ r_{L-1,1} & \cdots & r_{L-1,s} & r_{L-2,1} & \cdots & r_{L-2,s} & r_{L-3,1} & \cdots & r_{L-3,s} & \cdots & 0 & \cdots & 0 \\ r_{L,1} & \cdots & r_{L,s} & r_{L-1,1} & \cdots & r_{L-1,s} & r_{L-2,1} & \cdots & r_{L-2,s} & \cdots & r_{0,1} & \cdots & r_{0,s} \end{pmatrix}$$

$$(4)$$

Consider a square submatrix P of size p of SSR, formed by the entries of SSR in the rows with indices  $1 \le i_1 < i_2 < \cdots < i_p \le (L+1)$  and columns of indices  $1 \le j_1 < \cdots < j_p \le s(L+1)$ . P, and its corresponding minor, are proper if  $j_l \le s \cdot i_l$  for all  $l \in \{1, \ldots, p\}$ .

The matrix SSR is called s-superregular iff all of its proper  $p \times p$  minors, for any  $p \leq L+1$ , are nonsingular.

| / 1                        | 1 | 0 | 0 | 0 | 0\ | (1             | 1 | 0 | 0 | 0 | 0                                      |
|----------------------------|---|---|---|---|----|----------------|---|---|---|---|----------------------------------------|
| 1                          |   |   |   |   |    | 0              | α | 1 | 1 | 0 | $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ |
| $\langle \alpha^3 \rangle$ | 1 | 1 | α | 1 | 1/ | $\backslash_1$ | α | 1 | α | 1 | $_{1})$                                |

 $\alpha^3 + \alpha + 1 = 0.$ 

### **Superregularity and CDP**

Lemma 1. Let  $H^{(D)}$  be the parity check matrix of the D-th truncation of a systematic convolutional code, given

by



and let  $H'^{(D)}$  be the matrix obtained from  $H^{(D)}$  by removing the columns in positions  $(k+1), 2(k+1), 3(k+1), \dots, (D+1)(k+1)$ , that is



Then the CDP of the convolutional code given by  $H^{(D)}$  is (2,3,...,D+2) if and only if  $H'^{(D)}$  is a k-superregular matrix. Known for k=1: Gluesing-Luerssen et al 2006, Gabidulin 1989

## **Binary superregular matrices?**

- 1-superregularity
- 1x1:

(1) 
$$\rightarrow$$
 (2,1) block code

- 2x2:  $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \rightarrow (2,1) \ conv. \ code, \ cdp = (2,3)$
- 3x3 not possible  $\begin{pmatrix} 1 & & \\ 1 & 1 & \\ ? & 1 & 1 \end{pmatrix} \rightarrow NO(2,1) \ conv. \ code, \ cdp = (2,3,4)$

#### The problem addressed here

**Definition 3.** Let  $\Delta(2^m, n)$  be the largest free distance  $\mathscr{D}$  such that there exists a rate (n-1)/n systematic MDS convolutional code over  $GF(2^m)$  with column distance profile as in (3).

$$d_0 = 2, d_1 = 3, \dots, d_j = j + 2, \dots, d_D = D + 2 = \mathscr{D}.$$
 (3)

The main problem that we address in this paper is to determine exact values, or constructive lower bounds, for  $\Delta(2^m, n)$ . Please note that there is no restriction of the degree *D* in Definition 3.

#### The problem addressed here : approach

Add coefficients  $r_{i,j}$ . How many layers  $r_{i,1}$ , ...,  $r_{i,k}$  can be completed, maintaining the *s*-superregularity?



If the layer  $r_{D,1}, ..., r_{D,k}$  can be completed, maintaining the superregularity, the corresponding code has column distance 2, 3, ..., D + 2

## Previous world records for $2^m \ge 4$



Table I

Some rate (n-1)/n MDS codes (not necessarily systematic) described in the literature.

#### **New constructions : distance 3**

**Lemma 2.** We can w.l.o.g assume  $r_{0,1} = \cdots = r_{0,n} = 1$ . **Proposition 2.**  $\Delta(q^m, q^m) = 3$  for q prime and  $m \ge 0$ .

*Proof:* Select  $r_{0,i} = 1$  and  $r_{1,i}$ ,  $i = 1, ..., q^m - 1$  as the  $q^m - 1$  distinct nonzero elements of  $GF(q^m)$ . Without loss of generality, the parity check matrix of (1) takes the form

$$H^{(1)} = \begin{pmatrix} 1 & 1 & \cdots & 1 & 1 & 0 & \cdots & 0 & 0 \\ 1 & 2 & \cdots & q^m - 1 & 0 & 1 & \cdots & 1 & 1 \end{pmatrix}$$
$$H^{\prime(1)} = \begin{pmatrix} 1 & 1 & \cdots & 1 & 0 & \cdots & 0 \\ 1 & 2 & \cdots & q^m - 1 & 1 & \cdots & 1 \end{pmatrix}$$

**Comparison with Wyner-Ash code:** 

$$H_{WA} = \left( \begin{array}{ccc} 1 + x + x^2 & 1 + x & 1 + x^2 & 1 \end{array} \right).$$

It is easy to see that the CDP of the Wyner-Ash code is [2,2,3], i. e. this is not an MDS code. The construction of Proposition 2 can be considered as a  $q^m$ -ary generalization of the Wyner-Ash code, of memory 2, but this code is an MDS code, with CDP [2,3].

#### **New constructions: distance 4**

**Lemma 4.** For a code with a CDP of [2,3,4], its parity check matrix  $H^{(2)}$  must satisfy (i)  $r_{i,s} \neq 0$  for i = 1, 2, s = 1, ..., k, (ii)  $r_{i,s} \neq r_{i,t}$  for  $i = 1, 2, 1 \leq s < t \leq k$ , (iii)  $r_{1,t} \neq r_{2,s}/r_{1,s}$  for  $1 \leq s, t \leq k$ , (iv)  $r_{2,s}/r_{1,s} \neq r_{2,t}/r_{1,t}$  for  $1 \leq s < t \leq k$ , (v)  $r_{2,s} - r_{2,t} \neq r_{1,u}(r_{1,s} - r_{1,t})$  for  $1 \leq s < t \leq k$ ,  $1 \leq u \leq k$ , (vi)  $r_{2,s} \neq (r_{1,s}(r_{2,u} - r_{2,t}) - r_{1,t}r_{2,u} + r_{1,u}r_{2,t})/(r_{1,u} - r_{1,t})$  for  $1 \leq s < t < u \leq k$ .

Proof:

$$\begin{vmatrix} 1 & 0 \\ r_{i,s} & 1 \end{vmatrix}, \begin{vmatrix} 1 & 0 \\ r_{2,s} & r_{1,t} \end{vmatrix}, \begin{vmatrix} 1 & 1 \\ r_{i,s} & r_{i,t} \end{vmatrix}, \begin{vmatrix} r_{1,s} & 1 \\ r_{2,s} & r_{1,t} \end{vmatrix}, \begin{vmatrix} r_{1,s} & r_{1,t} \\ r_{2,s} & r_{2,t} \end{vmatrix}$$

#### **New constructions**

Example 1:

has CDP equal to [2,3,4].

$$H^{(2)} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & \alpha & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ \alpha^3 & 1 & 0 & 1 & \alpha & 0 & 1 & 1 & 1 \end{pmatrix} \quad H(x) = (1 + x + \alpha^3 x^2, 1 + \alpha x + x^2, 1).$$

#### **New constructions**

**Proposition 3.**  $\Delta(2^m, 2^{m-1}) = 4$ .

*Proof:*  $H'^{(2)} = \begin{pmatrix} 1 & 1 & \dots & 1 & 0 & 0 & \dots & 0 & 0 & 0 & \dots & 0 \\ a_1 & a_2 & \dots & a_k & 1 & 1 & \dots & 1 & 0 & 0 & \dots & 0 \\ b_1 & b_2 & \dots & b_k & a_1 & a_2 & \dots & a_k & 1 & 1 & \dots & 1 \end{pmatrix}$ 

Let  $\mathbb{F} = GF(2^m)$ .  $Tr^m(): \mathbb{F} \to GF(2)$   $H_\beta = \{x \in \mathbb{F} | Tr^m(\beta x) = 0\}.$   $x \to Tr^m(x) = \sum_{i=0}^{m-1} x^{2^i}.$ 

Let  $k = 2^{m-1} - 1$ , select  $\beta$  as an arbitrary nonzero field element, select c as an arbitrary constant in  $\mathbb{F} \setminus H_{\beta}$ . Then select  $a_1, \ldots, a_k := r_{1,1}, \ldots, r_{1,k}$  as all distinct nonzero elements in  $H_{\beta}$ , and set  $b_s := r_{2,s} = a_s(a_s + c) = r_{1,s}(r_{1,s} + c)$  for  $s = 1, \ldots, k$ . We need to verify that this construction satisfies the conditions in Lemma 4

# **Proof, distance=4, rate=** $\frac{2^{m-1}-1}{2^{m-1}}$ **construction**

(i) This holds because  $b_s = a_s(a_s + c)$  is a product of two nonzeros.

(*ii*) All  $a_s$ 's are distinct. Assume that  $b_s = b_t$ ,  $s \neq t$ . Then  $0 = a_s(a_s + c) = a_t(a_t + c) = (a_s + a_t)c + a_s^2 + a_t^2 = (a_s + a_t)c + (a_s + a_t)^2 = (a_s + a_t)(c + a_s + a_t)$ . The first factor is nonzero since  $a_s \neq a_t$ . The second factor is also nonzero since  $a_s + a_t \in H_\beta$  (because  $H_\beta$  is closed under addition) while  $c \notin H_\beta$ , a contradiction.

(*iii*) Assume that  $a_s a_t = b_s$ . Then  $a_s a_t = a_s(a_s + c) \Rightarrow a_t = a_s + c$ , a contradiction, since  $a_t \in H_\beta$  and  $a_s + c \notin H_\beta$ . (*iv*) Assume that  $b_s/a_s = b_t/a_t, s \neq t$ . Then  $a_s + c = a_t + c \Rightarrow a_s = a_t$ , a contradiction.

$$b_{s} + b_{t} + a_{u}(a_{s} + a_{t}) = a_{s}(a_{s} + c) + a_{t}(a_{t} + c) + a_{u}(a_{s} + a_{t})$$
  
$$= a_{s}^{2} + a_{t}^{2} + (a_{s} + a_{t})(c + a_{u})$$
  
$$= (a_{s} + a_{t})^{2} + (a_{s} + a_{t})(c + a_{u})$$
  
$$= (a_{s} + a_{t})(a_{s} + a_{t} + c + a_{u})$$

which again is a product of nonzero factors, because  $c \notin H_{\beta}$  and  $a_s + a_t + a_u \in H_{\beta}$ , and hence nonzero. (*vi*)

$$\begin{aligned} b_s + \frac{a_s(b_t + b_u) + a_u b_t + a_t b_u}{a_t + a_u} &= a_s(a_s + c) + \frac{a_s(a_t(a_t + c) + a_u(a_u + c)) + a_u a_t(a_t + c) + a_t a_u(a_u + c))}{a_t + a_u} \\ &= a_s(a_s + c) + \frac{a_s(a_t + a_u)^2 + a_s c(a_t + a_u) + a_t a_u(a_t + a_u)}{a_t + a_u} \\ &= a_s(a_s + c) + a_s(a_t + a_u) + a_s c + a_t a_u \\ &= a_s^2 + a_s a_t + a_s a_u + a_t a_u \\ &= (a_s + a_t)(a_s + a_u) \neq 0. \end{aligned}$$

#### **Computer search algorithm**

The goal of the search algorithm is to select the coefficients  $r_{i,j}$  successively, ordered first on *i* and then reversely on *j*, in such a way that the conditions on the minors are met.

#### 1) Some useful facts:

**Lemma 5.** We can w.l.o.g assume  $r_{1,i} < r_{1,i+1}$ , i = 1, ..., k-1 for any choice of ordering <. **Lemma 6.** Consider an MDS convolutional code  $\mathscr{C}$  with polynomial parity check matrix

$$H(x) = (1 + \sum_{i=1}^{D} r_{i,1}x^{i}, \dots, 1 + \sum_{i=1}^{D} r_{i,k}x^{i}, 1) \in \mathbb{F}[x].$$

Then the code  $\mathscr{C}_c$  with parity check matrix

$$H_c(x) = (1 + \sum_{i=1}^{D} c^i r_{i,1} x^i, \dots, 1 + \sum_{i=1}^{D} c^i r_{i,k} x^i, 1) \in \mathbb{F}[x]$$

is also MDS for any  $c \in \mathbb{F} \setminus \{0\}$ .

*Proof.* Let  $v(x) = (v_1(x), \dots, v_n(x)) = (\sum_{i=0}^{D} v_{1,i} x^i, \dots, \sum_{i=0}^{D} v_{n,i} x^i)$ . Then  $v(x)H(x)^{\top} = 0$  iff  $v_c(x)H_c(x)^{\top} = 0$  for

$$v_c(x) = (\sum_{i=0}^{D} c^{-i} v_{1,i} x^i, \dots, \sum_{i=0}^{D} c^{-i} v_{n,i} x^i).$$

**Corollary 1.** If a systematic MDS convolutional code exists, we can w.l.o.g. assume that it has a parity check matrix with  $r_{1,k} = 1$ .

 $\square$ 

### **Computer search algorithm**

The goal of the search algorithm is to select the coefficients  $r_{i,j}$  successively, ordered first on *i* and then reversely on *j*, in such a way that the conditions on the minors are met.

1) Some useful facts:

**Lemma 7.** Let M be a k-superregular matrix over  $GF(q^m)$ , with q a prime. Raising each element of M to power q yields another k-superregular matrix.

**Corollary 2.** In particular, let M be a k-superregular matrix over  $GF(2^m)$ . Squaring each element of M yields another k-superregular matrix.

**Corollary 3.** Assume that the values for  $r_{0,i}$ , i = 1, ..., k and for  $r_{1,k}$  are all fixed to 1, as allowed by Lemma 3 and Corollary 1. *Then, for*  $r_{1,k-1}$ , *it suffices to consider one representative of each cyclotomic coset.* 

#### **Computer search algorithm**

The goal of the search algorithm is to select the coefficients  $r_{i,j}$  successively, ordered first on *i* and then reversely on *j*, in such a way that the conditions on the minors are met.

| Algorithm 1: A computer search algorithm                                                                                         |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| <b>Result:</b> finds good $2^m$ -ary MDS codes of rate $(n-1)/n$                                                                 |  |  |  |  |
| <b>Input</b> : Field size $2^m$ , target distance $\mathcal{D}^*$ , code length <i>n</i>                                         |  |  |  |  |
| <b>Data:</b> $\rho$ points to current position                                                                                   |  |  |  |  |
| 1 initialization;                                                                                                                |  |  |  |  |
| 2 $value(r_{0,i}) := 1, i = 1, \dots, k, value(r_{1,k}) = 1;$                                                                    |  |  |  |  |
| 3 Precompute the set of proper submatrices $\mathscr{M} = \bigcup_{\rho=r_{1,k-1}}^{r_{\mathscr{D}^*-2,1}} \mathscr{M}_{\rho}$ ; |  |  |  |  |
| 4 $\rho := r_{1,k-1};$                                                                                                           |  |  |  |  |
| 5 Precompute the set of legal values $\mathscr{L}(\rho)$ ;                                                                       |  |  |  |  |
| 6 while $\rho \leq r_{\mathscr{D}^*-2,1}$ and more coefficient values to check for $\rho$ do                                     |  |  |  |  |
| 7 <b>if</b> more coefficient values to check for $\rho$ then                                                                     |  |  |  |  |
| 8 assign next value to coefficient at $\rho$ ;                                                                                   |  |  |  |  |
| 9 update determinants needed for $\mathcal{M}_{\rho+1}$ , and $\mathcal{L}(\rho+1)$ ;                                            |  |  |  |  |
| 10 if deepest level so far then                                                                                                  |  |  |  |  |
| record selected values of coefficients;                                                                                          |  |  |  |  |
| 12 end                                                                                                                           |  |  |  |  |
| 13 $\rho = \rho + 1;$                                                                                                            |  |  |  |  |
| else                                                                                                                             |  |  |  |  |
| $\rho = \rho - 1;$                                                                                                               |  |  |  |  |
| 16 end                                                                                                                           |  |  |  |  |
| 17 end                                                                                                                           |  |  |  |  |

| n | Δ | Coefficients | R     | Remark  |                    |
|---|---|--------------|-------|---------|--------------------|
| 2 | 6 | 0, 1, 4, 3   | 0.035 | Justese | en & Hughes (1974) |

Table II TABLE OF BOUNDS ON  $\Delta(2^3, n)$  FOR THE FIELD DEFINED BY  $1 + \alpha + \alpha^3 = 0$ .



# Polynomial notation for convolutional codes

In the conventional polynomial notation of convolutional codes [10], the parity check matrix can be described as

$$H(x) = (\sum_{i=0}^{D} r_{i,1}x^{i}, \dots, \sum_{i=0}^{D} r_{i,k}x^{i}, 1) \in \mathbb{F}[x].$$

#### Example 1:

$$H^{(2)} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & \alpha & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ \alpha^3 & 1 & 0 & 1 & \alpha & 0 & 1 & 1 & 1 \end{pmatrix} \qquad H(x) = (1 + x + \alpha^3 x^2, 1 + \alpha x + x^2, 1).$$

$$G^{(2)} = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & \alpha^3 \\ 0 & 1 & 1 & 0 & 0 & \alpha & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & \alpha \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & \alpha \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix} \qquad G(x) = \begin{pmatrix} 1 & 0 & 1 + x + \alpha^3 x^2 \\ 0 & 1 & 1 + \alpha x + x^2 \end{pmatrix}$$

| n | Δ | Coefficients | R     | Remark |
|---|---|--------------|-------|--------|
| 2 | 6 | 0, 1, 4, 3   | 0.035 | [3]    |





| n | Δ | Coefficients                   | R                    |
|---|---|--------------------------------|----------------------|
| 2 | 9 | 0, 1, 19, 5, 24, 15, 0         | $3.4 \cdot 10^{-8}$  |
| 3 | 6 | 0 1, 11 28, 21 6, 24 11        | $4.4 \cdot 10^{-5}$  |
| 5 | 5 | 0 1 18 2, 5 8 17 25, 3 2 13 18 | $5.2 \cdot 10^{-11}$ |



| n | Δ        | Coefficients                                      | R                    |
|---|----------|---------------------------------------------------|----------------------|
| 2 | 10       | 0, 1, 6, 61, 60, 46, 28, 23                       | $1.2 \cdot 10^{-10}$ |
| 3 | 7        | 0 1, 6 0, 2 37, 21 44, 55 28                      | $4.1 \cdot 10^{-11}$ |
| 4 | $\geq 6$ | 0 1 6, 2 6 26, 13 61 38, 30 33 60                 | $1.4 \cdot 10^{-11}$ |
| 7 | ≥5       | 0 1 6 2 12 3, 14 36 26 25 51 13, 19 60 16 62 5 58 | $3.2\cdot10^{-20}$   |

| $T_{al}$ | h  | V |
|----------|----|---|
| Ia       | U. | Y |

Table of bounds on  $\Delta(2^6, n)$  for the field defined by  $1 + \alpha + \alpha^6 = 0$ .

#### **Rareness**

*rareness* of the parameter pair  $(n, \mathcal{D})$ 

probability that a randomly generated convolutional code over  $GF(2^m)$  of rate (n-1)/n will be an MDS code with CDP of  $[2, \ldots, \mathcal{D}]$ .



Figure 1. Rareness  $P_R(\rho, n, 6)$  of codes for GF(64) for  $n \in \{2, 3, 4, 7\}$ : Exact rareness  $P_R(\rho, n, 6)$  for  $\rho \le 7$ , estimates  $\tilde{P}_R(\rho, n, 6)$  for n > 7. In the figure, the search depth  $\rho$  is measured in terms of number of coefficients. In order to construct a rate 6/7 encoder of distance  $\mathcal{D} = 5$ , it is necessary to find a sequence of 17 coefficients  $r_{1,5}, \ldots, r_{1,1}, r_{2,6}, \ldots, r_{3,1}$ . To get an encoder with distance  $\mathcal{D} = 4$ , it suffices with 11 coefficients. Similar for the other cases.

| n | Δ        | Coefficients                                        | R                    |
|---|----------|-----------------------------------------------------|----------------------|
| 5 | $\geq 6$ | 0 1 31 2, 62 103 64 125, 51 57 19 110, 11 39 43 114 | $8 \cdot 10^{-18}$   |
| 8 | ≥5       | 0 1 31 2 62 32 103, 3 31 15 0 7 1 63,               | $6.4 \cdot 10^{-16}$ |
|   |          | 8 94 119 51 41 10 17                                |                      |

Table VI TABLE OF BOUNDS ON  $\Delta(2^7, n)$  FOR THE FIELD DEFINED BY  $1 + \alpha^3 + \alpha^7 = 0$ .

| n  | Δ        | Coefficients                                                         | R                         |
|----|----------|----------------------------------------------------------------------|---------------------------|
| 2  | ≥11      | 0, 1, 25, 3, 0, 198, 152, 56, 68                                     | $2.2\cdot10^{-7}$         |
| 3  | $\geq 8$ | 0 1, 25 0, 1 238, 100 106, 195 245, 37 33                            | $2.0 \cdot 10^{-12}$      |
| 4  | ≥7       | 0 1 25, 2 25 198, 1 14 228, 113 74 214, 21 250 172                   | $pprox 2 \cdot 10^{-17}$  |
| 11 | ≥5       | 0 96 95 176 156 169 160 81 11 245, 107 5 223 167 7 177 98 238 93 53, | $\approx 3\cdot 10^{-28}$ |
|    |          | 37 208 233 89 75 74 184 31 119 100                                   |                           |

#### Table VII

Table of bounds on  $\Delta(2^8, n)$  for the field defined by  $1 + \alpha^2 + \alpha^3 + \alpha^4 + \alpha^8 = 0$ .

| n  | Δ        | Coefficients                                   | R                    |
|----|----------|------------------------------------------------|----------------------|
| 2  | ≥12      | 0, 54, 91, 181, 267, 291, 379, 28, 95, 143     | $1.4 \cdot 10^{-11}$ |
| 6  | $\geq 6$ | 0 280 362 276 426, 206 155 326 324 360,        | $3.9\cdot10^{-11}$   |
|    |          | 356 447 507 312 144, 224 375 236 55 448        |                      |
| 13 | ≥5       | 0 19 325 321 356 397 317 455 98 130 149 413,   | $8.4\cdot10^{-27}$   |
|    |          | 48 101 120 272 209 188 405 352 46 343 289 152, |                      |
|    |          | 318 80 256 98 255 274 147 340 392 453 30 451   |                      |

#### Table VIII

Table of bounds on  $\Delta(2^9, n)$  for the field defined by  $1 + \alpha^4 + \alpha^9 = 0$ .

| n  | Δ  | Coefficients                                                   | R                  |
|----|----|----------------------------------------------------------------|--------------------|
| 3  | ≥9 | 0 603, 246 106, 115 693, 483 544, 603 152, 815 788, 984 721    | $pprox 10^{-15}$   |
| 5  | ≥7 | 0 498 997 964, 560 214 101 723, 453 111 370 54,                | $5 \cdot 10^{-18}$ |
|    |    | 455 17 625 509, 904 431 926 856                                |                    |
| 8  | ≥6 | 0 322 804 12 140 1004 384, 778 916 786 247 586 698 294,        | $3 \cdot 10^{-24}$ |
|    |    | 379 7 784 239 817 284 398, 178 588 110 41 425 976 393          |                    |
| 17 | ≥5 | 0 1 77 2 154 78 956 3 10 155 325 79 618 957 231 4,             | $4 \cdot 10^{-39}$ |
|    |    | 308 0 4 77 11 1 200 10 80 3 24 155 87 325 619 618,             |                    |
|    |    | 958 768 255 404 577 976 368 374 709 33 530 109 677 594 652 226 |                    |

Table IX

Table of bounds on  $\Delta(2^{10}, n)$  for the field defined by  $1 + \alpha^3 + \alpha^{10} = 0$ .

| n | Δ        | Coefficients                                                            | R                    |
|---|----------|-------------------------------------------------------------------------|----------------------|
| 2 | ≥13      | 0, 1992, 813, 1890, 440, 630, 1947, 1574, 1356, 234, 1266               | $1.0 \cdot 10^{-9}$  |
| 4 | $\geq 8$ | 0 1809 1118, 2027 1610 539, 1042 7 1730,                                | $5.6 \cdot 10^{-15}$ |
|   |          | 2020 591 1459, 902 899 1584, 172 1192 513                               |                      |
| 9 | $\geq 6$ | 0 1999 762 1845 1102 1115 1014 328, 1349 345 498 1561 27 987 1300 1793, | $2.0 \cdot 10^{-22}$ |
|   |          | 1728 562 488 304 43 71 1911 1140, 1524 660 465 327 322 748 1574 1414    |                      |

Table X TABLE OF BOUNDS ON  $\Delta(2^{11}, n)$  FOR THE FIELD DEFINED BY  $1 + \alpha^2 + \alpha^{11} = 0$ .

| n  | Δ        | Coefficients                                                             | R                    |
|----|----------|--------------------------------------------------------------------------|----------------------|
| 2  | ≥14      | 0, 3294, 1040, 448, 3624, 2406, 826, 1122, 587, 1034, 342, 4037          | $< 10^{-15}$         |
| 6  | ≥7       | 0 3202 2711 92 2688, 3908 1649 1252 3897 1604, 3687 3602 1603 2339 1350, | $1.2 \cdot 10^{-14}$ |
|    |          | 1700 2969 104 3406 2679, 1345 919 3302 2116 810                          |                      |
| 11 | $\geq 6$ | 0 669 4050 4007 745 3863 324 1617 3951 1343,                             | $3 \cdot 10^{-31}$   |
|    |          | 703 1123 782 3343 1919 3177 1839 1006 2183 426,                          |                      |
|    |          | 2139 2050 1676 1187 3222 467 1764 2387 2868 641,                         |                      |
|    |          | 2564 2249 3187 3114 3228 743 443 1220 3540 2620                          |                      |

Table XI

TABLE OF BOUNDS ON  $\Delta(2^{12}, n)$  for the field defined by  $1 + \alpha^3 + \alpha^4 + \alpha^7 + \alpha^{12} = 0$ .

| n  | Δ        | Coefficients                                                  | R                         |
|----|----------|---------------------------------------------------------------|---------------------------|
| 3  | ≥10      | 0 337, 7672 6843, 3625 3361, 7970 7490,                       | $3.6 \cdot 10^{-11}$      |
|    |          | 5531 2322, 5227 5758, 133 2290, 1453 189                      |                           |
| 5  | $\geq 8$ | 0 441 2192 3413, 3222 7502 7405 4155, 88 5939 343 6171,       | $\approx 5\cdot 10^{-21}$ |
|    |          | 1082 8149 2823 7269, 8022 6454 4999 3373, 3518 442 710 6968   |                           |
| 7  | ≥7       | 0 5160 5711 7681 748 5319, 2131 6233 723 4539 7315 5654,      | $2 \cdot 10^{-19}$        |
|    |          | 5126 7465 3577 6826 5553 1131, 4954 6763 6593 1568 7157 8112, |                           |
|    |          | 1961 4310 877 2927 7197 2672                                  |                           |
| 13 | $\geq 6$ | 0 5645 7651 3109 2678 802 6934 1946 5589 2833 5821 38,        | $\approx 8\cdot 10^{-37}$ |
|    |          | 5394 2500 5877 3141 4724 3374 5191 7218 4844 423 822 6875,    |                           |
|    |          | 5712 6619 3935 6414 8025 1422 4391 5698 5481 6850 2635 4786,  |                           |
|    |          | 556 2558 1063 5172 566 7978 3664 5848 3859 6905 6434 71       |                           |

Table XII

TABLE OF BOUNDS ON  $\Delta(2^{13}, n)$  for the field defined by  $1 + \alpha + \alpha^3 + \alpha^4 + \alpha^{13} = 0$ .

| n  | Δ        | Coefficients                                                                  | R                   |
|----|----------|-------------------------------------------------------------------------------|---------------------|
| 4  | ≥9       | 0 61 9533, 1260 4487 6469, 3689 8777 4510, 11257 13252 1239,                  | $3 \cdot 10^{-14}$  |
|    |          | 15121 10306 11679, 9618 13110 4549, 12420 5210 13006                          |                     |
| 8  | ≥7       | 0 14132 6404 8841 7620 6707 1150,                                             | $1.4\cdot 10^{-22}$ |
|    |          | 14939 8238 9174 9560 1677 4156 11112,                                         |                     |
|    |          | 11424 2037 7827 4640 11071 14007 6628,                                        |                     |
|    |          | 13374 10684 2080 14648 1097 14383 1198,                                       |                     |
|    |          | 10966 15875 9746 9595 13007 4019 1354                                         |                     |
| 15 | $\geq 6$ | 0 15439 10581 4136 503 11096 5590 8608 16006 8229 562 15423 14311 16137,      | $2 \cdot 10^{-38}$  |
|    |          | 5899 1875 8985 16334 15293 13429 5172 5303 9128 109 10068 1358 7752 6288,     |                     |
|    |          | 13251 13386 11513 2438 443 15582 4641 2845 3509 12593 6608 14686 11470 15578, |                     |
|    |          | 8683 12489 444 8891 4727 12844 12383 5530 4478 9079 9226 5886 6790 8363       |                     |

#### Table XIII

Table of bounds on  $\Delta(2^{14}, n)$  for the field defined by  $1 + \alpha + \alpha^{11} + \alpha^{12} + \alpha^{14} = 0$ .

#### **Upper bounds**

Theorem 1. For rate (n-1)/n codes over  $GF(q^m)$  with  $CDP = [2, 3, ..., \mathscr{D}], n-1 \le (q^m-1)/(\mathscr{D}-2).$ 

Proof:

 $\begin{aligned} \mathcal{D} &= 3 \qquad \text{Proposition 2.} \\ \mathcal{D} &= 4 \qquad \left| \begin{array}{c} 1 & 1 \\ r_{1,s} & r_{1,t} \end{array} \right| = r_{1,s} + r_{1,t}, \left| \begin{array}{c} r_{1,s} & r_{1,t} \\ r_{2,s} & r_{2,t} \end{array} \right| = r_{1,s}r_{2,t} + r_{1,t}r_{2,s}, \text{ and } \left| \begin{array}{c} r_{1,s} & 1 \\ r_{2,s} & r_{1,t} \end{array} \right| = r_{2,s} + r_{1,s}r_{1,t}. \\ \\ \mathcal{D} &> 4 \qquad \left| \begin{array}{c} r_{2,s} & r_{2,t} \\ r_{3,s} & r_{3,t} \end{array} \right| = r_{2,s}r_{3,t} + r_{2,t}r_{3,s}, \left| \begin{array}{c} r_{2,s} & 1 \\ r_{3,s} & r_{1,t} \end{array} \right| = r_{2,s}r_{1,t} + r_{3,s}, \text{ and } \left| \begin{array}{c} r_{2,s} & r_{1,t} \\ r_{3,s} & r_{2,t} \end{array} \right| = r_{2,s}r_{2,t} + r_{1,t}r_{3,s}. \end{aligned}$ 

Generalizing the argument, it follows that all  $r_{i,t}/r_{i-1,t}$  for  $1 \le i \le \mathcal{D} - 2, 1 \le t \le k$  are distinct nonzero values.

## Conclusions

Motivated by the practical problem of fast recovery of a coded packet-erasure channel, we have studied systematic MDS convolutional codes over  $GF(2^m)$ .

We have presented new optimum constructions for free distances  $\mathscr{D} \leq 4$ ,

tables of new codes found by computer search,

and a combinatorial upper bound which is tight in the case of small free distances.

In order to assess how "good" a code is, we have also introduced the concept of rareness.

#### Questions? Comments?