Optimum MDS convolutional codes over GF(2^m) and their relation to the trace function

> Ángela Barbero and Øyvind Ytrehus UVa, Simula@UiB, UiB

Problem setting

- Unicast transmission over the Internet
	- (Memoryless) packet erasure channel, capacity " 1ε "
- Solutions in the Internet:
	- TCP uses ARQ
		- Problem: Long round trip time (RTT) ≈ 100 's ms
			- **The recovery delay of any ARQ system large**
			- Rate loss due to inexact RTT estimation

– **Delay of recovery**

- If *no* delay constraints: ARQ sufficient in many cases
- Applications *with* delay constraints: : Multimedia, IoT control applications, stock market applications, games
- Better: Erasure correcting codes

Coding criteria

- Code rate close to channel capacity???
- (Low) probability of recovery failure
	- Either decoding failure: erasure pattern covers a codeword
	- Or recovery delay exceeding tolerance of application
- Recovery complexity: Systematic codes?

Coding candidates

- MDS, Reed-Solomon: Long delay
- «Rateless» , fountain codes: Long delay

Unsuited for delay sensitive app's

- Convolutional codes: «good» **column distance profile**
	- Binary?
	- q-ary
	- Flexible rate

«Block codes are for boys, convolutional codes are for men» – J. Massey

Convolutional codes for dummies

Block code:

$$
c = uG = (u_1 \cdots u_k) \begin{pmatrix} g_{11} & \cdots & g_{1n} \\ \vdots & \ddots & \vdots \\ g_{k1} & \cdots & g_{kn} \end{pmatrix}
$$

Minimum distance = min{ $w(c)$: $c \neq 0$ }

Convolutional code:

$$
c = uG = (u^{(0)} \quad u^{(1)} \quad \dots) \begin{pmatrix} G_0 & G_1 & \dots & G_L \\ & G_0 & \vdots & \vdots & \dots \\ & & G_0 & \end{pmatrix}
$$

$$
c^{(0)} = u^{(0)} G_0, c^{(1)} = u^{(0)} G_1 + u^{(1)} G_0, \dots
$$

$$
CDP = \min \{ w(c^{(0)}), w(c^{(0)}c^{(1)}), \dots : c^{(0)} \neq 0 \}
$$

Convolutional codes and erasure recovery for dummies

If CDP is $(2,3,4, \ldots, \mathcal{D})$ then

an erasure pattern

- $-$ of weight j and
- *starting* at block/time 1

will be recovered at time *j* iff $j < \infty$

Convolutional code approach

 q -ary convolutional codes with optimum column distance profile

 \bullet H. Gluesing-Luerssen, J. Rosenthal, and R. Smartan, and

– **MDS**-convolutional codes

– E.Gabidulin, 1989

•
$$
cdp = (n - k + 1,2(n - k) + 1, ..., \mathcal{D})
$$
,

- Existence of MDS code equivalent to existence of **superregular** matrices
- Existing constructions require large field

• J. Rosenthal, and R. Smarandache, 1998

Our convolutional code approach

- Systematic
- Over GF(2*^m*)
- High rate $\frac{n-1}{n}$ \overline{n}
- MDS (CDP= $(2,3,4, ..., \mathcal{Q}, \mathcal{Q}, \mathcal{Q}, ...)$

Let $m \ge 1, n \ge 2, k = n - 1$ be integers, $\mathbb{F} = GF(2^m)$, and define the matrices and vectors

$$
R_0 = (r_{0,1}, \dots, r_{0,k}) \in \mathbb{F}^k \qquad H_0 = (R_0 | 1) \in \mathbb{F}^n,
$$

\n
$$
R_i = (r_{i,1}, \dots, r_{i,k} | 0) \in \mathbb{F}^k, H_i = \binom{H_{i-1}}{R_i} \in \mathbb{F}^{(i+1) \times n}
$$

\n
$$
H^{(L)} = (H_L, \binom{0_{1 \times n}}{H_{L-1}}, \dots, \binom{0_{(L-1) \times n}}{H_0}) \in \mathbb{F}^{(L+1) \times n(L+1)},
$$

$$
H^{(2)} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & \alpha & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ \alpha^3 & 1 & 0 & 1 & \alpha & 0 & 1 & 1 & 1 \\ & & & & H_2 & H_1 & H_0 & H_0 & 0 \end{pmatrix}
$$

Let $m \ge 1, n \ge 2, k = n - 1$ be integers, $\mathbb{F} = GF(2^m)$, and define the matrices and vectors

$$
R_0 = (r_{0,1}, \dots, r_{0,k}) \in \mathbb{F}^k \qquad H_0 = (R_0 | 1) \in \mathbb{F}^n,
$$

\n
$$
R_i = (r_{i,1}, \dots, r_{i,k} | 0) \in \mathbb{F}^k, H_i = \binom{H_{i-1}}{R_i} \in \mathbb{F}^{(i+1) \times n}
$$

\n
$$
H^{(L)} = (H_L, \binom{0_{1 \times n}}{H_{L-1}}, \dots, \binom{0_{(L-1) \times n}}{H_0}) \in \mathbb{F}^{(L+1) \times n(L+1)},
$$

Example 1. Let $\mathbb{F} = GF(2^3)$ with primitive element α defined by $\alpha^3 + \alpha + 1 = 0$.

$$
H^{(2)} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & \alpha & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ \alpha^3 & 1 & 0 & 1 & \alpha & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &
$$

H(0)

Let $m \ge 1, n \ge 2, k = n - 1$ be integers, $\mathbb{F} = GF(2^m)$, and define the matrices and vectors

$$
R_0 = (r_{0,1}, \dots, r_{0,k}) \in \mathbb{F}^k \qquad H_0 = (R_0 | 1) \in \mathbb{F}^n,
$$

\n
$$
R_i = (r_{i,1}, \dots, r_{i,k} | 0) \in \mathbb{F}^k, H_i = \binom{H_{i-1}}{R_i} \in \mathbb{F}^{(i+1) \times n}
$$

\n
$$
H^{(L)} = (H_L, \binom{0_{1 \times n}}{H_{L-1}}, \dots, \binom{0_{(L-1) \times n}}{H_0}) \in \mathbb{F}^{(L+1) \times n(L+1)},
$$

H(1)

Let $m \ge 1, n \ge 2, k = n - 1$ be integers, $\mathbb{F} = GF(2^m)$, and define the matrices and vectors

$$
R_0 = (r_{0,1}, \dots, r_{0,k}) \in \mathbb{F}^k \qquad H_0 = (R_0 | 1) \in \mathbb{F}^n,
$$

\n
$$
R_i = (r_{i,1}, \dots, r_{i,k} | 0) \in \mathbb{F}^k, H_i = \binom{H_{i-1}}{R_i} \in \mathbb{F}^{(i+1) \times n}
$$

\n
$$
H^{(L)} = (H_L, \binom{0_{1 \times n}}{H_{L-1}}, \dots, \binom{0_{(L-1) \times n}}{H_0}) \in \mathbb{F}^{(L+1) \times n(L+1)},
$$

H(2)

Generator matrix of a convolutional code

A systematic encoder for the code $\mathcal{C}^{(L)}$ is represented by

$$
G^{(L)} = \begin{pmatrix} G_0 & G_1 & \cdots & G_L \\ & G_0 & \cdots & G_{L-1} \\ & & \ddots & \vdots \\ & & & G_0 \end{pmatrix} \in \mathbb{F}^{k(L+1) \times n(L+1)}
$$

where

$$
G_0 = (I_k | R_0^\top) \in \mathbb{F}^{k \times n}, \overline{G_i = (0_k | R_i^\top)} \in \mathbb{F}^{k \times n} \text{ for } i > 0,
$$

$$
H^{(2)} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & \alpha & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ \alpha^3 & 1 & 0 & 1 & \alpha & 0 & 1 & 1 \end{pmatrix}
$$

$$
G^{(2)}H^{(2)T} = (0)
$$

$$
G^{(2)} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}_{1,3}
$$

Definition 1. Consider a lower triangular matrix

$$
SR = \begin{pmatrix} r_0 & 0 & 0 & \cdots & 0 \\ r_1 & r_0 & 0 & \cdots & 0 \\ r_2 & r_1 & r_0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ r_L & r_{L-1} & r_{L-2} & \cdots & r_0 \end{pmatrix}
$$

where each element $r_i \in \mathbb{F}$.

Consider a square submatrix P of size p of SR, formed by the entries of SR in the rows with indices $1 \le i_1 < i_2 <$ $\cdots < i_p \le (L+1)$ and columns of indices $1 \le j_1 < \cdots < j_p \le (L+1)$. P, and its corresponding minor, are proper if $\boxed{i_1 \le i_l}$ for all $l \in \{1, ..., p\}$.

Definition 1. Consider a lower triangular matrix

where each element $r_i \in \mathbb{F}$.

Consider a square submatrix P of size p of SR, formed by the entries of SR in the rows with indices $1 \le i_1 < i_2 <$ $\cdots < i_p \le (L+1)$ and columns of indices $1 \le j_1 < \cdots < j_p \le (L+1)$. P, and its corresponding minor, are proper if $j_l \le i_l$ for all $l \in \{1, ..., p\}$.

Definition 1. Consider a lower triangular matrix

where each element $r_i \in \mathbb{F}$.

Consider a square submatrix P of size p of SR, formed by the entries of SR in the rows with indices $1 \le i_1 < i_2 <$ $\cdots < i_p \le (L+1)$ and columns of indices $1 \le j_1 < \cdots < j_p \le (L+1)$. P, and its corresponding minor, are proper if $j_l \le i_l$ for all $l \in \{1, ..., p\}$.

Definition 1. Consider a lower triangular matrix

where each element $r_i \in \mathbb{F}$.

Consider a square submatrix P of size p of SR, formed by the entries of SR in the rows with indices $1 \le i_1 < i_2 <$ $\cdots < i_p \le (L+1)$ and columns of indices $1 \le j_1 < \cdots < j_p \le (L+1)$. P, and its corresponding minor, are proper if $j_l \le i_l$ for all $l \in \{1, ..., p\}$.

Definition 1. Consider a lower triangular matrix

$$
SR = \begin{pmatrix} r_0 & 0 & 0 & \cdots & 0 \\ r_1 & r_0 & 0 & \cdots & 0 \\ r_2 & r_1 & r_0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ r_L & r_{L-1} & r_{L-2} & \cdots & r_0 \end{pmatrix}
$$

where each element $r_i \in \mathbb{F}$.

Consider a square submatrix P of size p of SR, formed by the entries of SR in the rows with indices $1 \le i_1 < i_2 <$ $\cdots \le i_p \le (L+1)$ and columns of indices $1 \le j_1 < \cdots < j_p \le (L+1)$. P, and its corresponding minor, are proper if $j_l \leq i_l$ for all $l \in \{1, \ldots, p\}$. SR is superregular if all its proper $p \times p$ minors are non singular for any $p \leq L+1$.

When matrix SR is upper triangular the definition of proper submatrices is analogous.

$$
\begin{pmatrix}\n1 & 0 & 0 \\
1 & 1 & 0 \\
\alpha^2 & \alpha & 1\n\end{pmatrix}\n\qquad\n\begin{pmatrix}\n1 & 0 & 0 \\
1 & 1 & 0 \\
0 & \alpha & 1\n\end{pmatrix}\n\qquad\n\begin{pmatrix}\n1 & 0 & 0 \\
1 & 1 & 0 \\
\alpha & \alpha & 1\n\end{pmatrix}
$$

18

Our contributions

- *s*-superregularity
- Constructions of MDS codes with CDP=(2,3, \mathcal{D} 4)
- Efficient algorithm to search for MDS codes with CDP= $(2,3,4,..., \mathcal{D})$, $\mathcal{D} \geq 5$

Definition 2. Consider an s-lower triangular matrix (where s is a positive integer)

$$
SSR = \begin{pmatrix}\nr_{0,1} & \cdots & r_{0,s} & 0 & \cdots & 0 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\
r_{1,1} & \cdots & r_{1,s} & r_{0,1} & \cdots & r_{0,s} & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\
r_{2,1} & \cdots & r_{2,s} & r_{1,1} & \cdots & r_{1,s} & r_{0,1} & \cdots & r_{0,s} & \cdots & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \cdots & \vdots & \ddots & \vdots \\
r_{L-1,1} & \cdots & r_{L-1,s} & r_{L-2,1} & \cdots & r_{L-2,s} & r_{L-3,1} & \cdots & r_{L-3,s} & \cdots & 0 & \cdots & 0 \\
r_{L,1} & \cdots & r_{L,s} & r_{L-1,1} & \cdots & r_{L-1,s} & r_{L-2,1} & \cdots & r_{L-2,s} & \cdots & r_{0,1} & \cdots & r_{0,s}\n\end{pmatrix}
$$
\n(4)

Consider a square submatrix P of size p of SSR, formed by the entries of SSR in the rows with indices $1 \le i_1$ < $i_2 < \cdots < i_p \le (L+1)$ and columns of indices $1 \le j_1 < \cdots < j_p \le s(L+1)$. P, and its corresponding minor, are proper if $i_1 \le s \cdot i_l$ for all $l \in \{1, ..., p\}$.

Definition 2. Consider an s-lower triangular matrix (where s is a positive integer)

$$
SSR = \begin{pmatrix}\n & & & & & & & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\
r_{1,1} & \cdots & r_{1,s} & r_{0,1} & \cdots & r_{0,s} & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \cdots & \vdots & \ddots & \vdots \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \cdots & \vdots & \ddots & \vdots \\
r_{L,1} & \cdots & r_{L,2} & r_{L-1,1} & \cdots & r_{L-1,s} & r_{L-2,1} & \cdots & r_{L-2,s} & \cdots & r_{0,1} & \cdots & r_{0,s}\n\end{pmatrix}
$$
\n(4)

Consider a square submatrix P of size p of SSR, formed by the entries of SSR in the rows with indices $1 \le i_1$ < $i_2 < \cdots < i_p \le (L+1)$ and columns of indices $1 \le j_1 < \cdots < j_p \le s(L+1)$. P, and its corresponding minor, are proper if $j_l \leq s \cdot i_l$ for all $l \in \{1, ..., p\}$.

Definition 2. Consider an s-lower triangular matrix (where s is a positive integer)

$$
SSR = \begin{pmatrix}\n & \cdots & r_{0,s} & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\
r_{1,1} & \cdots & r_{1,s} & r_{0,1} & \cdots & r_{0,s} & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
r_{L,1} & \cdots & r_{L-1,s} & r_{L-1,1} & \cdots & r_{L-1,s} & r_{L-2,1} & \cdots & r_{L-2,s} & \cdots & r_{0,1} & \cdots & r_{0,s}\n\end{pmatrix}\n\tag{4}
$$

Consider a square submatrix P of size p of SSR, formed by the entries of SSR in the rows with indices $1 \le i_1$ $i_2 < \cdots < i_p \le (L+1)$ and columns of indices $1 \le j_1 < \cdots < j_p \le s(L+1)$. P, and its corresponding minor, are proper if $j_l \leq s \cdot i_l$ for all $l \in \{1, ..., p\}$.

Definition 2. Consider an s-lower triangular matrix (where s is a positive integer)

Consider a square submatrix P of size p of SSR, formed by the entries of SSR in the rows with indices $1 \le i_1$ < $i_2 < \cdots < i_p \le (L+1)$ and columns of indices $1 \le j_1 < \cdots < j_p \le s(L+1)$. P, and its corresponding minor, are proper if $j_l \leq s \cdot i_l$ for all $l \in \{1, ..., p\}$.

Definition 2. Consider an s-lower triangular matrix (where s is a positive integer)

$$
SSR = \begin{pmatrix}\nr_{0,1} & \cdots & r_{0,s} & 0 & \cdots & 0 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\
r_{1,1} & \cdots & r_{1,s} & r_{0,1} & \cdots & r_{0,s} & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\
r_{2,1} & \cdots & r_{2,s} & r_{1,1} & \cdots & r_{1,s} & r_{0,1} & \cdots & r_{0,s} & \cdots & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \cdots & \vdots & \ddots & \vdots \\
r_{L-1,1} & \cdots & r_{L-1,s} & r_{L-2,1} & \cdots & r_{L-2,s} & r_{L-3,1} & \cdots & r_{L-3,s} & \cdots & 0 & \cdots & 0 \\
r_{L,1} & \cdots & r_{L,s} & r_{L-1,1} & \cdots & r_{L-1,s} & r_{L-2,1} & \cdots & r_{L-2,s} & \cdots & r_{0,1} & \cdots & r_{0,s}\n\end{pmatrix}
$$
\n(4)

Consider a square submatrix P of size p of SSR, formed by the entries of SSR in the rows with indices $1 \le i_1$ $i_2 < \cdots < i_p \le (L+1)$ and columns of indices $1 \le j_1 < \cdots < j_p \le s(L+1)$. P, and its corresponding minor, are proper if $j_l \leq s \cdot i_l$ for all $l \in \{1, ..., p\}$.

The matrix SSR is called s-superregular iff all of its proper $p \times p$ minors, for any $p \leq L+1$, are nonsingular.

 $\alpha^3 + \alpha + 1 = 0$.

Superregularity and CDP
Lemma 1. Let $H^{(D)}$ be the parity check matrix of the D-th truncation of a systematic convolutional code, given

 by

and let $H^{(D)}$ be the matrix obtained from $H^{(D)}$ by removing the columns in positions $(k+1), 2(k+1), 3(k+1)$ $1),..., (D+1)(k+1)$, that is

Then the CDP of the convolutional code given by $H^{(D)}$ is $(2,3,\ldots,D+2)$ if and only if $H'^{(D)}$ is a k-superregular Known for *k*=1: Gluesing-Luerssen *et al* 2006, Gabidulin 1989 |²⁵ *matrix.*

Binary superregular matrices?

- *1*-superregularity
- \cdot 1x1:

$$
(1) \rightarrow (2,1) block code
$$

- \cdot 2x2: 1 1 1 \rightarrow (2,1) conv. code, cdp = (2,3)
- 3x3 not possible 1 1 1 ? 1 1 $\rightarrow NO(2,1)$ conv. code, cdp = (2,3,4)

The problem addressed here

Definition 3. Let $\Delta(2^m, n)$ be the largest free distance \mathcal{D} such that there exists a rate $(n-1)/n$ systematic MDS convolutional code over $GF(2^m)$ with column distance profile as in (3).

$$
d_0 = 2, d_1 = 3, \dots, d_j = j + 2, \dots, d_D = D + 2 = \mathcal{D}.
$$
\n(3)

The main problem that we address in this paper is to determine exact values, or constructive lower bounds, for $(2^m, n)$. Please note that there is no restriction of the degree D in Definition 3.

The problem addressed here : approach

Add coefficients $r_{i,j}$. How many layers $r_{i,1}, \ldots, r_{i,k}$ can be completed, maintaining the *s*-superregularity?

If the layer $r_{D,1}, \ldots, r_{D,k}$ can be completed, maintaining the superregularity, the corresponding code has column distance $2, 3, ..., D + 2$

Previous world records for $2^m \geq 4$

Table I

SOME RATE $(n-1)/n$ MDS CODES (NOT NECESSARILY SYSTEMATIC) DESCRIBED IN THE LITERATURE.

New constructions : distance 3

Lemma 2. We can w.l.o.g assume $r_{0,1} = \cdots = r_{0,n} = 1$. **Proposition 2.** $\Delta(q^m, q^m) = 3$ for q prime and $m \ge 0$.

Proof: Select $r_{0,i} = 1$ and $r_{1,i}$, $i = 1,...,q^m - 1$ as the $q^m - 1$ distinct nonzero elements of $GF(q^m)$. Without loss of generality, the parity check matrix of (1) takes the form

$$
H^{(1)} = \begin{pmatrix} 1 & 1 & \cdots & 1 & 1 & 0 & \cdots & 0 & 0 \\ 1 & 2 & \cdots & q^{m} - 1 & 0 & 1 & \cdots & 1 & 1 \end{pmatrix}
$$

$$
H'^{(1)} = \begin{pmatrix} 1 & 1 & \cdots & 1 & 0 & \cdots & 0 \\ 1 & 2 & \cdots & q^{m} - 1 & 1 & \cdots & 1 \end{pmatrix}
$$

Comparison with Wyner-Ash code:

$$
H_{WA} = \left(1 + x + x^2 \quad 1 + x \quad 1 + x^2 \quad 1\right).
$$

It is easy to see that the CDP of the Wyner-Ash code is $[2,2,3]$, i. e. this is not an MDS code. The construction of Proposition 2 can be considered as a q^m -ary generalization of the Wyner-Ash code, of memory 2, but this code is 30an MDS code, with CDP [2,3].

New constructions: distance 4

Lemma 4. For a code with a CDP of [2,3,4], its parity check matrix $H^{(2)}$ must satisfy (i) $r_{i,s} \neq 0$ for $i = 1, 2, s = 1, ..., k$, (*ii*) $r_{i,s} \neq r_{i,t}$ for $i = 1,2, 1 \leq s < t \leq k$, (*iii*) $r_{1,t} \neq r_{2,s}/r_{1,s}$ for $1 \leq s,t \leq k$, (iv) $r_{2,s}/r_{1,s} \neq r_{2,t}/r_{1,t}$ for $1 \leq s < t \leq k$, (v) $r_{2,s} - r_{2,t} \neq r_{1,u}(r_{1,s} - r_{1,t})$ for $1 \leq s < t \leq k$, $1 \leq u \leq k$, (vi) $r_{2,s} \neq (r_{1,s}(r_{2,u}-r_{2,t})-r_{1,t}r_{2,u}+r_{1,u}r_{2,t})/(r_{1,u}-r_{1,t})$ for $1 \leq s < t < u \leq k$.

Proof:

$$
\begin{vmatrix}\n1 & 0 \\
r_{i,s} & 1\n\end{vmatrix},\n\begin{vmatrix}\n1 & 0 \\
r_{2,s} & r_{1,t}\n\end{vmatrix},\n\begin{vmatrix}\n1 & 1 \\
r_{i,s} & r_{i,t}\n\end{vmatrix},\n\begin{vmatrix}\nr_{1,s} & 1 \\
r_{2,s} & r_{1,t}\n\end{vmatrix},\n\begin{vmatrix}\nr_{1,s} & 1 \\
r_{2,s} & r_{2,t}\n\end{vmatrix},\n\begin{vmatrix}\n1 & 0 & 0 \\
r_{i,s} & 1 & 0 \\
r_{i,s} & r_{1,t} & 0 \\
r_{2,s} & r_{2,t} & 1\n\end{vmatrix},\n\begin{vmatrix}\n1 & 1 & 0 & 0 \\
r_{i,s} & r_{1,t} & 1 \\
r_{2,s} & r_{2,t} & r_{1,u}\n\end{vmatrix},\n\begin{vmatrix}\n1 & 1 & 1 \\
r_{i,s} & r_{1,t} & r_{1,u} \\
r_{2,s} & r_{2,t} & r_{2,u}\n\end{vmatrix}
$$

New constructions

Example 1:

has CDP equal to $[2,3,4]$.

$$
H^{(2)} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & \alpha & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ \alpha^3 & 1 & 0 & 1 & \alpha & 0 & 1 & 1 & 1 \end{pmatrix} \quad H(x) = (1 + x + \alpha^3 x^2, 1 + \alpha x + x^2, 1).
$$

New constructions

Proposition 3. $\Delta(2^m, 2^{m-1}) = 4$.

 $H^{\prime(2)} =$ 1 1 … 1 0 0 … 0 0 0 … 0 a_1 a_2 … a_k 1 1 … 1 0 0 … 0 b_1 b_2 … b_k a_1 a_2 … a_k 1 1 … 1 *Proof:*

 $H_{\beta} = \{x \in \mathbb{F} | Tr^{m}(\beta x) = 0\}.$ Let $\mathbb{F} = GF(2^m)$. $Tr^m() : \mathbb{F} \rightarrow GF(2)$ $x \to Tr^{m}(x) = \sum_{i=0}^{m-1} x^{2^{i}}$.

Let $k = 2^{m-1} - 1$, select β as an arbitrary nonzero field element, select c as an arbitrary constant in $\mathbb{F}\setminus H_\beta$. Then select $a_1,\ldots,a_k := r_{1,1},\ldots,r_{1,k}$ as all distinct nonzero elements in H_β , and set $b_s := r_{2,s} = a_s(a_s + c) = r_{1,s}(r_{1,s} + c)$ for $s = 1,...,k$. We need to verify that this construction satisfies the conditions in Lemma 4

Proof, distance=4, rate= $2^{m-1}-1$ 2^{m-1} **construction**

(i) This holds because $b_s = a_s(a_s + c)$ is a product of two nonzeros.

(ii) All a_s 's are distinct. Assume that $b_s = b_t$, $s \neq t$. Then $0 = a_s(a_s + c) = a_t(a_t + c) = (a_s + a_t)c + a_s^2 + a_t^2 = (a_s + a_t)c + (a_s + a_t)c$ $(a_t)^2 = (a_s + a_t)(c + a_s + a_t)$. The first factor is nonzero since $a_s \neq a_t$. The second factor is also nonzero since $a_s + a_t \in H_\beta$ (because H_β is closed under addition) while $c \notin H_\beta$, a contradiction.

(iii) Assume that $a_s a_t = b_s$. Then $a_s a_t = a_s (a_s + c) \Rightarrow a_t = a_s + c$, a contradiction, since $a_t \in H_\beta$ and $a_s + c \notin H_\beta$. (iv) Assume that $b_s/a_s = b_t/a_t$, $s \neq t$. Then $a_s + c = a_t + c \Rightarrow a_s = a_t$, a contradiction.

$$
(\nu)
$$

$$
b_s + b_t + a_u(a_s + a_t) = a_s(a_s + c) + a_t(a_t + c) + a_u(a_s + a_t)
$$

= $a_s^2 + a_t^2 + (a_s + a_t)(c + a_u)$
= $(a_s + a_t)^2 + (a_s + a_t)(c + a_u)$
= $(a_s + a_t)(a_s + a_t + c + a_u)$

which again is a product of nonzero factors, because $c \notin H_\beta$ and $a_s + a_t + a_u \in H_\beta$, and hence nonzero. (vi)

$$
b_s + \frac{a_s(b_t + b_u) + a_u b_t + a_t b_u}{a_t + a_u} = a_s(a_s + c) + \frac{a_s(a_t(a_t + c) + a_u(a_u + c)) + a_u a_t(a_t + c) + a_t a_u(a_u + c)}{a_t + a_u}
$$

$$
= a_s(a_s + c) + \frac{a_s(a_t + a_u)^2 + a_s c(a_t + a_u) + a_t a_u(a_t + a_u)}{a_t + a_u}
$$

$$
= a_s(a_s + c) + a_s(a_t + a_u) + a_s c + a_t a_u
$$

$$
= a_s^2 + a_s a_t + a_s a_u + a_t a_u
$$

$$
= (a_s + a_t)(a_s + a_u) \neq 0.
$$

Computer search algorithm

The goal of the search algorithm is to select the coefficients $r_{i,j}$ successively, ordered first on i and then reversely on j , in such a way that the conditions on the minors are met.

1) Some useful facts:

Lemma 5. We can w.l.o.g assume $r_{1,i} < r_{1,i+1}$, $i = 1, ..., k-1$ for any choice of ordering \lt . **Lemma 6.** Consider an MDS convolutional code $\mathscr C$ with polynomial parity check matrix

$$
H(x) = (1 + \sum_{i=1}^{D} r_{i,1}x^{i}, \dots, 1 + \sum_{i=1}^{D} r_{i,k}x^{i}, 1) \in \mathbb{F}[x].
$$

Then the code \mathcal{C}_c with parity check matrix

$$
H_c(x) = (1 + \sum_{i=1}^{D} c^i r_{i,1} x^i, \dots, 1 + \sum_{i=1}^{D} c^i r_{i,k} x^i, 1) \in \mathbb{F}[x]
$$

is also MDS for any $c \in \mathbb{F} \setminus \{0\}.$

Proof. Let $v(x) = (v_1(x), \dots, v_n(x)) = (\sum_{i=0}^D v_{1,i}x^i, \dots, \sum_{i=0}^D v_{n,i}x^i)$. Then $v(x)H(x)^\top = 0$ iff $v_c(x)H_c(x)^\top = 0$ for $v_c(x) = (\sum_{i=0}^{D} c^{-i} v_{1,i} x^i, \dots, \sum_{i=0}^{D} c^{-i} v_{n,i} x^i).$

Corollary 1. If a systematic MDS convolutional code exists, we can w.l.o.g. assume that it has a parity check matrix with $r_{1,k} = 1.$

 \Box

Computer search algorithm

The goal of the search algorithm is to select the coefficients $r_{i,j}$ successively, ordered first on i and then reversely on j , in such a way that the conditions on the minors are met.

1) Some useful facts:

Lemma 7. Let M be a k-superregular matrix over $GF(q^m)$, with q a prime. Raising each element of M to power q yields another k-superregular matrix.

Corollary 2. In particular, let M be a k-superregular matrix over $GF(2^m)$. Squaring each element of M yields another k-superregular matrix.

Corollary 3. Assume that the values for $r_{0,i}$, $i = 1,...,k$ and for $r_{1,k}$ are all fixed to 1, as allowed by Lemma 3 and Corollary 1. Then, for $r_{1,k-1}$, it suffices to consider one representative of each cyclotomic coset.

Computer search algorithm

The goal of the search algorithm is to select the coefficients $r_{i,j}$ successively, ordered first on i and then reversely

on j , in such a way that the conditions on the minors are met.

Polynomial notation for convolutional codes

In the conventional polynomial notation of convolutional codes [10], the parity check matrix can be described as

$$
H(x) = (\sum_{i=0}^{D} r_{i,1}x^{i}, \ldots, \sum_{i=0}^{D} r_{i,k}x^{i}, 1) \in \mathbb{F}[x].
$$

Example 1:

$$
H^{(2)} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & \alpha & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ \alpha^3 & 1 & 0 & 1 & \alpha & 0 & 1 & 1 & 1 \end{pmatrix} \qquad H(x) = (1 + x + \alpha^3 x^2, 1 + \alpha x + x^2, 1).
$$

\n
$$
G^{(2)} = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & \alpha^3 \\ 0 & 1 & 1 & 0 & 0 & \alpha & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & \alpha \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \end{pmatrix} \qquad G(x) = \begin{pmatrix} 1 & 0 & 1 + x + \alpha^3 x^2 \\ 0 & 1 & 1 + \alpha x + x^2 \\ 0 & 1 & 1 + \alpha x + x^2 \end{pmatrix}
$$

n		Coefficients	R
	10	0, 1, 6, 61, 60, 46, 28, 23	$1.2 \cdot 10^{-10}$
		0 1, 6 0, 2 37, 21 44, 55 28	$4.1 \cdot 10^{-11}$
	≥6	0 1 6, 2 6 26, 13 61 38, 30 33 60	$1.4 \cdot 10^{-11}$
		0 1 6 2 12 3, 14 36 26 25 51 13, 19 60 16 62 5 58	$3.2 \cdot 10^{-20}$

Table V

TABLE OF BOUNDS ON $\Delta(2^6, n)$ FOR THE FIELD DEFINED BY $1 + \alpha + \alpha^6 = 0$.

Rareness

rareness of the parameter pair (n, \mathcal{D})

probability that a randomly generated convolutional code over $GF(2^m)$ of rate $(n-1)/n$ will be an MDS code with CDP of $[2,\ldots,\mathscr{D}].$

Figure 1. Rareness $P_R(\rho, n, 6)$ of codes for $GF(64)$ for $n \in \{2, 3, 4, 7\}$. Exact rareness $P_R(\rho, n, 6)$ for $\rho \le 7$, estimates $\tilde{P}_R(\rho, n, 6)$ for $n > 7$. In the figure, the Figure 1. Kateliess $r_R(\rho, n, o)$ or codes for σ (σ) for $n \in \{2, \ldots, n\}$. Each instance α and σ and σ is measured in terms of number of coefficients. In order to construct a rate 6/7 encoder of distance \mathcal of 17 coefficients $r_{1,5}, \ldots, r_{1,1}, r_{2,6}, \ldots, r_{3,1}$. To get an encoder with distance $\mathcal{D} = 4$, it suffices with 11 coefficients. Similar for the other cases.

Table VI TABLE OF BOUNDS ON $\Delta(2^7, n)$ FOR THE FIELD DEFINED BY $1 + \alpha^3 + \alpha^7 = 0$.

Table VII

TABLE OF BOUNDS ON $\Delta(2^8, n)$ FOR THE FIELD DEFINED BY $1 + \alpha^2 + \alpha^3 + \alpha^4 + \alpha^8 = 0$.

Table VIII

TABLE OF BOUNDS ON $\Delta(2^9, n)$ FOR THE FIELD DEFINED BY $1 + \alpha^4 + \alpha^9 = 0$.

n	Δ	Coefficients	R
3	>9	0 603, 246 106, 115 693, 483 544, 603 152, 815 788, 984 721	$\approx 10^{-15}$
	\geq 7	0 498 997 964, 560 214 101 723, 453 111 370 54,	$5 \cdot 10^{-18}$
		455 17 625 509, 904 431 926 856	
8	>6	0 322 804 12 140 1004 384, 778 916 786 247 586 698 294,	$3 \cdot 10^{-24}$
		379 7 784 239 817 284 398, 178 588 110 41 425 976 393	
17	$>\!\!5$	0 1 77 2 154 78 956 3 10 155 325 79 618 957 231 4,	$4 \cdot 10^{-39}$
		308 0 4 77 11 1 200 10 80 3 24 155 87 325 619 618,	
		958 768 255 404 577 976 368 374 709 33 530 109 677 594 652 226	

Table IX

TABLE OF BOUNDS ON $\Delta(2^{10}, n)$ FOR THE FIELD DEFINED BY $1 + \alpha^3 + \alpha^{10} = 0$.

Table X TABLE OF BOUNDS ON $\Delta(2^{11}, n)$ FOR THE FIELD DEFINED BY $1 + \alpha^2 + \alpha^{11} = 0$.

Table XI

TABLE OF BOUNDS ON $\Delta(2^{12}, n)$ FOR THE FIELD DEFINED BY $1 + \alpha^3 + \alpha^4 + \alpha^7 + \alpha^{12} = 0$.

n	Δ	Coefficients	R
3	≥10	0 337, 7672 6843, 3625 3361, 7970 7490,	$3.6 \cdot 10^{-11}$
		5531 2322, 5227 5758, 133 2290, 1453 189	
5	>8	0 441 2192 3413, 3222 7502 7405 4155, 88 5939 343 6171,	\approx 5 \cdot 10 ⁻²¹
		1082 8149 2823 7269, 8022 6454 4999 3373, 3518 442 710 6968	
	\geq 7	0 5160 5711 7681 748 5319, 2131 6233 723 4539 7315 5654,	$2 \cdot 10^{-19}$
		5126 7465 3577 6826 5553 1131, 4954 6763 6593 1568 7157 8112,	
		1961 4310 877 2927 7197 2672	
13	>6	0 5645 7651 3109 2678 802 6934 1946 5589 2833 5821 38,	$\approx 8\cdot 10^{-37}$
		5394 2500 5877 3141 4724 3374 5191 7218 4844 423 822 6875,	
		5712 6619 3935 6414 8025 1422 4391 5698 5481 6850 2635 4786,	
		556 2558 1063 5172 566 7978 3664 5848 3859 6905 6434 71	

Table XII

TABLE OF BOUNDS ON $\Delta(2^{13}, n)$ FOR THE FIELD DEFINED BY $1 + \alpha + \alpha^3 + \alpha^4 + \alpha^{13} = 0$.

Table XIII

TABLE OF BOUNDS ON $\Delta(2^{14}, n)$ FOR THE FIELD DEFINED BY $1 + \alpha + \alpha^{11} + \alpha^{12} + \alpha^{14} = 0$.

Upper bounds

Theorem 1. For rate $(n-1)/n$ codes over $GF(q^m)$ with $CDP = [2,3,\ldots,\mathcal{D}], n-1 \leq (q^m-1)/(\mathcal{D}-2)$.

Proof:

 $\mathscr{D} = 3$ Proposition 2. $\mathcal{D} = 4$ $\begin{vmatrix} 1 & 1 \\ r_{1,s} & r_{1,t} \end{vmatrix} = r_{1,s} + r_{1,t}, \begin{vmatrix} r_{1,s} & r_{1,t} \\ r_{2,s} & r_{2,t} \end{vmatrix} = r_{1,s}r_{2,t} + r_{1,t}r_{2,s}$, and $\begin{vmatrix} r_{1,s} & 1 \\ r_{2,s} & r_{1,t} \end{vmatrix} = r_{2,s} + r_{1,s}r_{1,t}$. $\begin{vmatrix} r_{2,s} & r_{2,t} \\ r_{3,s} & r_{3,t} \end{vmatrix} = r_{2,s}r_{3,t} + r_{2,t}r_{3,s}$, $\begin{vmatrix} r_{2,s} & 1 \\ r_{3,s} & r_{1,t} \end{vmatrix} = r_{2,s}r_{1,t} + r_{3,s}$, and $\begin{vmatrix} r_{2,s} & r_{1,t} \\ r_{3,s} & r_{2,t} \end{vmatrix} = r_{2,s}r_{2,t} + r_{1,t}r_{3,s}$.

Generalizing the argument, it follows that all $r_{i,t}/r_{i-1,t}$ for $1 \le i \le \mathcal{D}-2, 1 \le t \le k$ are distinct nonzero values.

Conclusions

Motivated by the practical problem of fast recovery of a coded packet-erasure channel, we have studied systematic MDS convolutional codes over $GF(2^m)$.

We have presented new optimum constructions for free distances $\mathcal{D} \leq 4$,

tables of new codes found by computer search,

and a combinatorial upper bound which is tight in the case of small free distances.

In order to assess how "good" a code is, we have also introduced the concept of *rareness*.

Questions? Comments?