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Problem setting 

• Unicast transmission over the Internet 
– (Memoryless) packet erasure channel, capacity "1 − 𝜀" 

• Solutions in the Internet: 
– TCP uses ARQ 

• Problem: Long round trip time (RTT) ≈ 100’s ms 
– The recovery delay of any ARQ system large 
– Rate loss due to inexact RTT estimation 

– Delay of recovery 
• If no  delay constraints: ARQ sufficient in many cases 
• Applications with delay constraints: : Multimedia, IoT control 

applications, stock market applications,  games 

– Better: Erasure correcting codes 
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Coding criteria 

• Code rate close to channel capacity??? 

• (Low) probability of recovery failure 

– Either decoding failure:  
erasure pattern covers a codeword 

– Or recovery delay exceeding tolerance of 
application 

• Recovery complexity: Systematic codes? 
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Coding candidates 

• MDS, Reed-Solomon: Long delay 
• «Rateless» , fountain codes: Long delay 

 

• Convolutional codes: «good» column distance 
profile 
– Binary? 
– q-ary 
– Flexible rate  
– Random codes  

• What does «random» mean?? 
• Good column distance profile should still apply 

 

Unsuited for 
delay 

sensitive 
app’s 

«Block codes are for boys, convolutional codes are for men» – J. Massey 
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Convolutional codes for dummies 
Block code:   

𝑐 = 𝑢𝐺 =  𝑢1 ⋯ 𝑢𝑘

𝑔11 ⋯ 𝑔1𝑛

⋮ ⋱ ⋮
𝑔𝑘1 ⋯ 𝑔𝑘𝑛

 

Minimum distance = min 𝑤 𝑐 : 𝑐 ≠ 0  

Convolutional code:   

𝑐 = 𝑢𝐺 =  𝑢(0) 𝑢(1) ⋯

𝐺0 𝐺1 ⋯ 𝐺𝐿

𝐺0 ⋱ ⋮ ⋯

𝐺0

 

𝑐(0) = 𝑢(0)𝐺0  

CDP= min 𝑤 𝑐 0 , 𝑤 𝑐 0 𝑐 1 , ⋯  ∶ 𝑐(0) ≠ 0   

, 𝑐(1) = 𝑢(0)𝐺1 +  𝑢(1)𝐺0,… 
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Convolutional codes  
and erasure recovery  

for dummies 

If CDP is (2,3,4, … , D) then 

an erasure pattern  
– of weight  𝑗 and  

– starting at block/time 1  

will be recovered at time 𝑗 iff  𝑗 < D 
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• H. Gluesing-Luerssen, J. Rosenthal, and R. Smarandache,  
Strongly-MDS Convolutional Codes, IEEE Trans on IT 52, 2006. 

– E.Gabidulin, 1989 
 

• 𝑞-ary convolutional codes with optimum column distance 
profile 

– MDS-convolutional codes 
• J. Rosenthal, and R. Smarandache, 1998 

• cdp = (𝑛 − 𝑘 + 1,2(𝑛 − 𝑘) + 1, … ,D),  

– Existence of  MDS code equivalent to  existence of 
superregular matrices  

– Existing constructions require large field 

Convolutional code approach 
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Our convolutional code approach 

• Systematic  

• Over  GF(2m) 

• High rate 
𝑛−1

𝑛
 

• MDS (CDP=(2,3,4, … , D, D, D, ...)) 

 

 

 

8 



Parity-check matrix of a convolutional code 

H0 H1 H2 9 



H(0) 

Parity-check matrix of a convolutional code 
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H(1) 

Parity-check matrix of a convolutional code 
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H(2) 

Parity-check matrix of a convolutional code 
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Generator matrix of a convolutional code 

G(2)H(2)T=(0) 
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Proper minors and superregularity 
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Proper minors and superregularity 

15 



Proper minors and superregularity 
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Proper minors and superregularity 
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Proper minors and superregularity 

1 0 0
1 1 0

𝛼2 𝛼 1
 

1 0 0
1 1 0
0 𝛼 1

 
1 0 0
1 1 0
𝛼 𝛼 1
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Our contributions 

• s-superregularity 

• Constructions of MDS codes  with CDP=(2,3, D =4) 

• Efficient algorithm to search for MDS codes  with 
CDP=(2,3,4,…, D ), D ≥ 5 
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Proper minors and s-superregularity  
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Proper minors and s-superregularity  
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Proper minors and s-superregularity  
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Proper minors and s-superregularity  
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Proper minors and s-superregularity  

1 1 0 0 0 0
0 𝛼 1 1 0 0
1 𝛼 1 𝛼 1 1

 
1 1 0 0 0 0
1 𝛼 1 1 0 0

𝛼3 1 1 𝛼 1 1
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Superregularity and CDP 

Known for k=1: Gluesing-Luerssen et al 2006, Gabidulin 1989 25 



Binary superregular matrices? 

• 1-superregularity 

• 1x1: 
1   → 2,1  𝑏𝑙𝑜𝑐𝑘 𝑐𝑜𝑑𝑒 

• 2x2: 
1
1 1

 → 2,1  𝑐𝑜𝑛𝑣. 𝑐𝑜𝑑𝑒, 𝑐𝑑𝑝 = (2,3) 

• 3x3 not possible 
1
1 1
? 1 1

→ 𝑁𝑂 2,1  𝑐𝑜𝑛𝑣. 𝑐𝑜𝑑𝑒, 𝑐𝑑𝑝 = (2,3,4) 
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The problem addressed here 
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The problem addressed here : approach 

Add coefficients 𝑟𝑖,𝑗. How many layers 𝑟𝑖,1, … , 𝑟𝑖,𝑘 can be completed,  

maintaining the s-superregularity? 

If the layer  𝑟𝐷,1, … , 𝑟𝐷,𝑘 can be completed, maintaining the superregularity, the 

corresponding code has column distance  2, 3, … , 𝐷 + 2 
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Justesen & Hughes (1974) 
 
Gluesing-Luersen et. al,  
«Strongly MDS…», 2006 
 

Previous world records for 𝟐𝒎 ≥ 𝟒 
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New constructions : distance 3 

Comparison with Wyner-Ash code:  
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New constructions: distance 4 
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New constructions 

Example 1:  
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New constructions 

𝐻′(2) =

1 1 … 1 0 0 … 0 0 0 … 0
𝑎1 𝑎2 … 𝑎𝑘 1 1 … 1 0 0 … 0
𝑏1 𝑏2 … 𝑏𝑘 𝑎1 𝑎2 … 𝑎𝑘 1 1 … 1

 

Proof:  

4 
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Proof, distance=4, rate=
𝟐𝒎−𝟏−𝟏

𝟐𝒎−𝟏  construction 
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Computer search algorithm 

35 



Computer search algorithm 

36 



Computer search algorithm 
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Codes found  by computer search 

Justesen & Hughes (1974) 

Gluesing-Luersen et. al, «Strongly MDS…», 2006 

Implicit 
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Polynomial notation for convolutional 
codes 

Example 1:  
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Codes found  by computer search 
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Codes found  by computer search 
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Rareness 
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Codes found  by computer search 
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Codes found  by computer search 
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Codes found  by computer search 
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Codes found  by computer search 
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Codes found  by computer search 
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Upper bounds 
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Conclusions 
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Questions? 
Comments? 


